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Editor's Summary

 
 
 

of biomedical science to the clinic.
translationexpertise of contestants outside of traditional biological disciplines may be a powerful way to accelerate the 

investigation, teach us something about cancer biology. These examples support the notion that harnessing the
Challenge winners used a mathematical approach to identify biological modules that might, with continued 
of the antibody repertoire when the contest organizers translated the problem into generic language. In the BCC, the
example, in a recent contest, non-immunologists generated a method for annotating the complex genome sequence 
clinically relevant Challenges. But there is no doubt that the approach has value in solving big-data problems. For
contributions in the clinic. Indeed, DREAM and Sage Bionetworks have immediate plans to collaborate on new 

It also remains to be seen whether prize-based crowdsourcing contests can make varied and practical

tested.
may or may not be superior to existing gene expression profiling tests used in clinical practice. This remains to be
Challenge precompetition as well as a previously described first-generation 70-gene risk predictor. Thus, the result 
had to score better than a set of 60 different prognostic models developed by a team of expert programmers during a
question to be investigated must be framed so as to capture a significant outcome. In the BCC, participants' models 

The architecture of the Challenge itself is critical in determining the real-world importance of the result. The

scientific fields, communicating the science to an interdisciplinary audience is not a trivial endeavor.
computational platform to be used for peer review. Finally, because different conventions are used in divergent
TopCoder.com that can accommodate data sharing. Mechanisms for confidentiality would need to be built into any 
of time). In general, this requirement should not be an obstacle, as there are code-hosting sites such as GitHub and
the training and validation datasets for the BCC are available to readers via links into Synapse (for a six month period 
because Challenge-partner Sage Bionetworks had created a platform (Synapse) with this goal in mind. In fact, both
the ability to re-run each participant's code; in the context of the BCC, this requirement was easily achievable, 

haveReviewing such a model required that referees have access to the data and platform used for the Challenge and 
So what new knowledge was gained about reviewing an article in which the result is an active piece of software?

was subjected to advisory peer review after it was submitted to the journal.
and no publication. Last, the manuscript−−model, and if the criteria were not met, there would have been no winner

a so-called Challenge-assisted review. The editors also helped to develop criteria for determining the winning−−team
peer-reviewers, chosen by the editors, to be embedded within the challenge process, as members of the organizing
determining the meaningfulness of the outcome, the editors felt it was not. Thus, they chose to arrange for 
validity to substitute for traditional peer review. Because the specific conditions of a Challenge are critical in
built-in transparency and check on model reproducibility, would be sufficient evidence in support of the model's 

a form of ''academic currency.'' The editors pondered whether winning the Challenge, with its−−scholarly publication
possibility of publishing a Research Article that described the winning model. The Challenge prize would be a 

 about theScience Translational MedicineBefore the BCC was initiated, Challenge organizers approached 

ultimately fashioned the winning algorithm.
modeled various feature combinations, selecting ones that improved performance of their prognostic model until they
with multiple cancer types. Starting with these gene sets and some other clinical and molecular features, the team 

that the same research group had previously shown to be associated, in various ways,−−called attractor metagenes−−
., was based on sets of genes (signatures)et alnew breast cancer data set. The winning model, described by Cheng 

The winner of the Challenge was ultimately determined when a select group of top models were validated in a

leaderboard.
index (CI) of predicted death risks compared to overall survival in a held-out data set, and CIs were posted on a public
re-runnable source code. The predictive value of each model was assessed in real-time by calculating a concordance 
used it to train computational models that were then submitted to a common, open-access computational platform as
number data. Participants were given Web access to such data for 1981 women diagnosed with breast cancer and 
clinical information (age, tumor size, histological grade), genome-scale tumor mRNA expression data, and DNA copy
algorithm that could predict, more accurately than current benchmarks, the prognosis of breast cancer patients from 

participants competed to create an−−which was a step in the translational direction−−factor binding. In the BCC
example, modeling of protein-protein interactions for binding domains and peptides and the specificity of transcription 
cellular network inference and quantitative model building in systems biology.'' Previous Challenges involved, for
Challenges with the goal of catalyzing the ''interaction between theory and experiment, specifically in the area of 

conducts a variety of computational−−Dialogue for Reverse Engineering Assessments and Methods−−DREAM

Challenge design and scoring process formed the basis for a new style of publication peer review.
prognostic computational model that won the Challenge. In this experiment in scientific publishing, the rigor of the 

. outline the development of theet alinsights derived from its outcome. In the companion Research Article, Cheng 
Bionetworks/DREAM Breast Cancer Prognosis Challenge (BCC) describe the contest's conception, execution, and 

. (which was peer-reviewed in the traditional way), organizers of the Sageet alin biomedicine. In a Report by Margolin 
investigation into peer-review processes for competition-based crowdsourcing studies designed to address problems 

's editors the chance to conduct anScience Translational Medicinepublication of two unusual papers offered 
Although they no longer live in the lab, scientific editors still enjoy doing experiments. The simultaneous

DREAMing of Biomedicine's Future
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R E S EARCH ART I C L E
COMPUTAT IONAL MODEL ING
Development of a Prognostic Model for Breast Cancer
Survival in an Open Challenge Environment
Wei-Yi Cheng, Tai-Hsien Ou Yang, Dimitris Anastassiou*
3

The accuracy with which cancer phenotypes can be predicted by selecting and combining molecular features is
compromised by the large number of potential features available. In an effort to design a robust prognostic model
to predict breast cancer survival, we hypothesized that signatures consisting of genes that are coexpressed in
multiple cancer types should correspond to molecular events that are prognostic in all cancers, including breast
cancer. We previously identified several such signatures—called attractor metagenes—in an analysis of multiple
tumor types. We then tested our attractor metagene hypothesis as participants in the Sage Bionetworks–DREAM
Breast Cancer Prognosis Challenge. Using a rich training data set that included gene expression and clinical features
for breast cancer patients, we developed a prognostic model that was independently validated in a newly generated
patient data set. We describe our model, which was based on three attractor metagenes associated with mitotic
chromosomal instability, mesenchymal transition, or lymphocyte-based immune recruitment.
1
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INTRODUCTION

Medical tests that incorporate molecular profiling of tumors for clin-
ical decision-making (predictive tests) or prognosis (prognostic tests)
are typically based on models that combine values associated with par-
ticular molecular features, such as the expression levels of specific genes.
These genes are selected after analyzing rich gene expression data sets
(acquired from testing patient tumors) annotated with clinical phenotypes
such as drug responses or survival times. The data sets used to define a
model are referred to as “training data sets.” A computational technique
is typically used to identify a number of genes that, when properly com-
bined, are associated with a phenotype of interest in a statistically sig-
nificant manner. The predictive power of the resulting model is later
confirmed in independent “validation data sets.”

There are, however, vast numbers—tens or hundreds of thousands—
of potentially relevant molecular features to choose from when devel-
oping a model, making it difficult to precisely identify those at the core
of the biological mechanisms responsible for the phenotype of interest.
Spurious or suboptimal predictions may occur, and the end result may
be a model that only partly reflects physiological reality. Such a model
may still be clinically useful, but there is room for improvement.

One way to address this problem is by using molecular features pre-
selected on the basis of previous knowledge. In such an approach, a
training data set is used mainly for pinpointing the combination of pre-
selected features that is most associated with the phenotype of interest.
We used this approach during our participation in the Sage Bionetworks–
DREAM Breast Cancer Prognosis Challenge, an open challenge to build
computational models that accurately predict breast cancer survival
(hereinafter referred to as the Challenge) (1). Specifically, we hypothe-
sized that selected gene coexpression signatures present in multiple can-
cer types should be useful for prediction of survival in breast cancer. We
had derived these signatures, which we call “attractor metagenes,” previ-
ously through a multicancer analysis of gene expression data (2).

Attractor metagenes are signatures of coexpressed genes identified
in rich gene expression data sets by an iterative approach (2) starting
from a “seed” gene and converging to a metagene—a hypothetical gene
Center for Computational Biology and Bioinformatics and Department of Electrical
Engineering, Columbia University, New York, NY 10027, USA.
*Corresponding author. E-mail: da8@columbia.edu

www.Scie
whose expression levels are a weighted average of actual genes—that
points to the “heart” (core) of the coexpression mechanism. Each at-
tractor metagene results from the convergence of multiple seed genes.
By independently analyzing data sets from several different cancer types,
we found that there exist several such attractor metagenes to which this
iterative algorithm converges in nearly identical form, regardless of the
cancer type that gave rise to the gene expression data set. The differences
between similar metagenes identified in different cancer types may some-
times be smaller than the differences between those found by analyzing
data sets of the same cancer type (2). This observation suggests that sev-
eral attractormetagenes represent “pan-cancer” (cancer type–independent)
biomolecular events in cancer.

Through participation in the Challenge, we found that these attractor
metagenes were also strong prognostic features for breast cancer survival.
This phenotypic association was present despite the fact that these sig-
natures (i) were discovered by a purely unsupervised method (that is,
without reference to any phenotypic association) and (ii) were deter-
mined without using the Challenge training data set. Instead, we used
our previously identified attractor metagenes (2) as prognostic features
in theChallenge.Here,wedescribeourChallenge-winningmodel (1),which
combined three universal metagenes and several additional clinical and
molecular features to predict patient ranking in terms of their survival.
RESULTS

The three universal attractor metagenes used to develop our final
model contain genes associated with mitotic chromosomal insta-
bility (CIN), mesenchymal transition (MES), and lymphocyte-specific
immune recruitment (LYM). Because cancer is thought to be charac-
terized by a few unifying “hallmarks” (3), we think of these gene sig-
natures as “bioinformatic hallmarks of cancer” that are associated with
the ability of cancer cells to divide uncontrollably, to invade surround-
ing tissues, and, with the effort of the organism to fight cancer with a
particular immune response. In addition, our model makes use of an-
other molecular feature that we identified during our participation in
the Challenge: a metagene whose expression is associated with good
prognosis and that contains the expression values of two genes—FGD3
and SUSD3—that are genomically adjacent to each other.
nceTranslationalMedicine.org 17 April 2013 Vol 5 Issue 181 181ra50 1
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Participation in the Challenge
The initial phases of the Challenge (1) were based on partitioning of
the rich METABRIC breast cancer data set (4) (which includes mo-
lecular, clinical, and survival information from 1981 patients) into two
subsets: a training set and a validation set. Participants’ computational
models were developed on the training set and evaluated on the val-
idation set, using a real-time leaderboard to record the performance
[as determined with concordance index (CI) values, defined below] of
all submitted models. During the final phase of the Challenge, partic-
ipants were given access to the full set of the METABRIC data, which
had been renormalized for uniformity by Sage Bionetworks using eigen
probe set analysis (5). At that time, the computational models could be
trained on that full set and submitted for evaluation against a newly
generated validation data set of patients, referred to as the Oslo Val-
idation (OsloVal) data set (1). Therefore, the numerical values for the
results that we present here use the full METABRIC data set to max-
imize accuracy, whereas our computational models were developed
using the originally available training data sets.

The setup accounted for a vibrant environment in which each
participant was encouraged to observe and use others’ computer pro-
grams and to post comments and suggestions in the Sage Bionetworks
Synapse forum. Indeed, as we were discovering the prognostic abil-
ity of each attractor metagene (CIN, MES, and LYM), we immedi-
ately used the forum to make all participants aware of our findings,
in case others wanted to use them in the development of their own
models (for example, see http://support.sagebase.org/sagebase/
topics/mitotic_chromosomal_instability_attractor_metagene, http://
support.sagebase.org/sagebase/topics/mesenchymal_transition_attractor_
metagene-znl1g, and http://support.sagebase.org/sagebase/topics/
lymphocyte_specific_attractor_metagene).

It was also quite helpful for us to observe the results of other par-
ticipants’ use of our code, as we were able to avoid trying to incorporate
methods that we saw were not working well for others.

Selection of a numerical score for evaluating
prognostic models
A CI (6) was the numerical measure used to score all Challenge sub-
missions on the leaderboards. In this context, the CI is a score that
applies to a cohort of patients (rather than an individual patient) and
evaluates the similarity between the actual ranking of patients in
terms of their survival and the ranking predicted by the computa-
tional model. CI measures the relative frequency of accurate pairwise
predictions of survival over all pairs of patients for which such a
meaningful determination can be achieved and, therefore, is a num-
ber between 0 and 1. The average CI for random predictions is 0.5. If
a model achieves a CI of 0.75, then the model will correctly order the
survival of two randomly chosen patients three of four times. Our
final model had a CI of 0.756 in the OsloVal data set.

The METABRIC data set included both disease-specific (DS) sur-
vival data, in which all reported deaths were determined to be due to
breast cancer (otherwise, a patient was considered equivalent to a hy-
pothetical still living patient with reported survival equal to the time to
actual death from other causes), and overall survival (OS) data, in
which all deaths are reported even though they could potentially be
due to other causes. Our research performed in the context of the
Challenge used mainly DS survival–based data, and unless otherwise
noted, the CI scores referring to the METABRIC data set presented in
this paper were evaluated using DS survival data. This is because we
www.Scie
found that the CIs for models developed using DS survival–based data
from the METABRIC data set were significantly higher than those
obtained when the OS survival–based data were used. Furthermore,
we found that DS survival–based modeling did not need to include
age as a prognostic feature as much as OS survival–based modeling
did, which suggests that OS survival–based modeling cannot predict
survival using molecular features as accurately as DS survival–based
modeling, and instead needed to make use of age, which is an obvious
feature for predicting survival even in healthy people.

The first phases of the Challenge consisted of participants training
their prognostic computational models using a subset of samples from
the full METABRIC data set as a training set, whereas the remaining
subset was used to test the models by evaluating the CI scores in a real-
time leaderboard. The survival data and the corresponding scoring of
the OsloVal data set were OS survival–based. Accordingly, the Kaplan-
Meier survival curves presented in this paper involving OsloVal are
OS survival–based.

CI scores for individual genes. As a first task, we quantified the
prognostic ability of the expression level of each individual gene by
computing the CI between the expression levels of the gene in all pa-
tients and the survival of those patients (Table 1). Specifically, the CIs
reported in Table 1 are the CIs that we would calculate if the prog-
nostic model consisted exclusively of the expression level of only one
specific gene. For example, consider the CDCA5 gene (listed at the top
of the left-hand column of Table 1). If we ranked all patients in terms
of their CDCA5 expression levels, from highest to lowest, and then
ranked all patients in terms of their survival times, from shortest to
longest, these two rankings would yield a CI of 0.651. This means that
if we randomly select two patients from the METABRIC data set, the
one whose expression of CDCA5 is higher will have the shorter sur-
vival time 65.1% of the time. Because CDCA5 expression is associated
with poor prognosis (that is, the higher the expression, the shorter the
survival), we refer to CDCA5 as a poor survival–inducing gene (or
simply, an “inducing gene,” which is one that displays a CI that is sig-
nificantly greater than 0.5).

At the opposite end of the spectrum was the FGD3 gene, which
had a CI of 0.352 (Table 1, right-hand column). This CI indicates that
if one randomly chooses two patients from the METABRIC data set,
then the one with lower FGD3 expression levels will have the shorter
survival time 64.8% (100% minus 35.2%) of the time. Because high
levels of FGD3 expression were associated with a good prognosis (that
is, the higher the expression, the longer the survival), we refer to FGD3
as a survival-protective gene (or simply, a “protective” gene, which is
one that displays a CI that is significantly less than 0.5). Table 1 shows
two expanded lists of ranked genes: one with the most inducing genes
(those with the highest CIs) and one with the most protective genes
(those with the lowest CIs).

In the following, all references to gene expression levels, including
average values and numbers on scatter-plot axes, are assumed to be
log2-normalized as provided to us. For each attractor metagene, when
we refer to its top-ranked genes, we mean those that had the highest
mutual information (7) with the attractor metagene, as provided in our
previous work (2).

Mitotic CIN attractor metagene
In the Challenge, we represented the mitotic CIN attractor metagene
with the average of the expression levels of the 10 top-ranked genes
from our previously evaluated (2) attractor metagene: CENPA, DLGAP5,
nceTranslationalMedicine.org 17 April 2013 Vol 5 Issue 181 181ra50 2
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MELK, BUB1, KIF2C, KIF20A, KIF4A, CCNA2, CCNB, and NCAPG.
We refer to the metagene defined by this average as the “CIN fea-
ture.” It contains many genes that encode proteins that are part of the
kinetochore—a structure at which spindle fibers attach during cell di-
vision to segregate sister chromatids—particularly those involved in
the microtubule-kinetochore interface, suggesting a biological mecha-
nism by which mitotic chromosomal instability in dividing cancer
cells gives rise to daughter cells with genomic modifications, some
of which pass the test of natural selection. We showed previously that
the mitotic CIN attractor metagene is strongly associated with tumor
grade (a classification system that measures how abnormal a cancer
cell appears when assessed microscopically) in multiple cancers (2).

We essentially rediscovered the mitotic CIN attractor metagene by
identifying the genes for which expression was most associated with
poor prognosis in the METABRIC data set. Indeed, all 10 genes (listed
above) of the CIN feature that we used in the Challenge were among the
50 genes listed in the left column of Table 1; furthermore, 40 of the 50 genes
listed in the left column of Table 1 were among the top 100 genes of the
CIN attractor metagene identified previously (2) (the P value for such
overlap is less than 1.04 × 10−97 based on Fisher’s exact test).

Our results regarding this andother attractormetageneswere validated
in a statistically significant manner in the OsloVal data set despite its
relatively small size (184 samples). For example, Fig. 1 shows the Kaplan-
Meier cumulative survival curves (8) of theCIN feature for theMETABRIC
(P < 2 × 10−16 using log-rank test) and OsloVal (P = 0.0041 using log-rank
test) data sets, comparing tumors with high and low values of the CIN
feature. These data confirmed that poor prognosis was associated with
expression of the mitotic CIN attractor metagene.

MES attractor metagene
In the Challenge, we represented the MES attractor metagene with the
average of the expression levels of the 10 top-ranked genes from our
previously evaluated (2) attractor metagene: COL5A2, VCAN, SPARC,
THBS2, FBN1, COL1A2, COL5A1, FAP, AEBP1, and CTSK. We refer
to the metagene defined by this average as the MES feature. We had
discovered a nearly identical signature previously (9) from its associ-
ation with tumor stage (a measure of the extent to which the cancer
has spread to adjacent lymph nodes or distant sites in the body). Spe-
cifically, the signature is expressed in high amounts only in tumor
samples from patients whose cancer has exceeded a defined stage
threshold, which is cancer type–specific. For example, in breast cancer,
the MES signature appears early, when in situ carcinoma becomes
invasive (stage I); in colon cancer, it is expressed when stage II is
reached; and in ovarian cancer, it is expressed when stage III is reached.
Identification of stage-specific differentially expressed genes in these
three cancers reveals strong enrichment of the signature. We found that
this differential expression results from the fact that the signature is
present in some, but not all, samples in which the stage threshold is
exceeded, but never in samples in which the stage threshold has not
been reached. That is, the presence of the signature implies tumor in-
vasiveness, but its absence is uninformative.

Related versions of theMES signaturewere found to be prognostic in
various cancers, such as oral squamous cell carcinoma (2) and ovarian
cancer (10). In breast cancer, however, we found that the prognostic ability
of theMES feature individually was not significant.We reasoned that this
lack of prognostic power is explained by the fact that the presence of the
MES signature in breast cancer implies that the tumor is invasive, but this
was the case anyway for nearly all patients in the METABRIC data set.
Table 1. CIN expression and survival.We ranked individual genes in terms
of their CIs with respect to gene expression and survival data in theMETABRIC
data set. The CI measures the similarity of patient rankings based on the ex-
pression level of the gene compared to the actual rankings based on DS sur-
vival data. Shown on the left are the most “inducing” genes with the highest
CIs. Shownon the right are themost protective geneswith the lowest CIs. The
underlinedgenes are among the top100genesof theCINattractormetagene
defined in (2). Theprobe IDs are identifiers for probesdesignedby Illumina. If a
gene was profiled by multiple probes, we chose the probe with the highest
difference from the average CI for random predictions, 0.5. Genes identified
by asterisks are among the 10 top-ranked genes of the CIN attractor meta-
gene and were used in the model.
Probe ID
 Gene symbol
 CI
 Probe ID
 Gene symbol
 CI
ILMN_1683450
 CDCA5
 0.651
 ILMN_1772686
 FGD3
 0.352
ILMN_1714730
 UBE2C
 0.644
 ILMN_1785570
 SUSD3
 0.358
ILMN_1801939
 CCNB2*
 0.643
 ILMN_2310814
 MAPT
 0.372
ILMN_1700337
 TROAP
 0.643
 ILMN_2353862
 LRRC48
 0.374
ILMN_2357438
 AURKA
 0.642
 ILMN_2397954
 PARP3
 0.374
ILMN_1781943
 FAM83D
 0.640
 ILMN_1674661
 CIRBP
 0.375
ILMN_2212909
 MELK*
 0.640
 ILMN_1801119
 BCL2
 0.376
ILMN_1695658
 KIF20A*
 0.639
 ILMN_1708983
 CASC1
 0.377
ILMN_1673721
 EXO1
 0.639
 ILMN_1772588
 CCDC170
 0.377
ILMN_1786125
 CCNA2*
 0.638
 ILMN_1849013
 HS.570988
 0.378
ILMN_1801257
 CENPA*
 0.638
 ILMN_1809639
 TMEM26
 0.378

ILMN_1796949
 TPX2
 0.637
 ILMN_1657361
 CBX7
 0.380
ILMN_1771039
 GTSE1
 0.637
 ILMN_1713162
 GSTM2
 0.380
ILMN_1716279
 CENPE
 0.637
 ILMN_1806456
 C14orf45
 0.380
ILMN_1808071
 KIF14
 0.636
 ILMN_1790315
 C7orf63
 0.381
ILMN_2077550
 RACGAP1
 0.636
 ILMN_1667716
 TMEM101
 0.382
ILMN_1736176
 PLK1
 0.636
 ILMN_1907649
 HS.144312
 0.382
ILMN_1703906
 HJURP
 0.636
 ILMN_1811014
 PGR
 0.382
ILMN_1663390
 CDC20
 0.636
 ILMN_1807211
 NICN1
 0.382
ILMN_1751776
 CKAP2L
 0.635
 ILMN_1805104
 ABAT
 0.382
ILMN_2344971
 FOXM1
 0.635
 ILMN_1655117
 WDR19
 0.383
ILMN_1751444
 NCAPG*
 0.635
 ILMN_1696254
 CYB5D2
 0.383
ILMN_1747016
 CEP55
 0.634
 ILMN_1777342
 PREX1
 0.383
ILMN_2042771
 PTTG1
 0.634
 ILMN_2183692
 PHYHD1
 0.384
ILMN_1740291
 POLQ
 0.633
 ILMN_2128795
 LRIG1
 0.384
ILMN_2202948
 BUB1*
 0.633
 ILMN_1784783
 NME5
 0.384
ILMN_1685916
 KIF2C*
 0.633
 ILMN_1862217
 HS.532698
 0.384
ILMN_2413898
 MCM10
 0.632
 ILMN_1815705
 LZTFL1
 0.384
ILMN_1713952
 C1orf106
 0.632
 ILMN_1670925
 CYB5D1
 0.385
ILMN_1684217
 AURKB
 0.632
 ILMN_1684034
 STAT5B
 0.386
ILMN_1815184
 ASPM
 0.632
 ILMN_1664922
 FLNB
 0.387
ILMN_1737728
 CDCA3
 0.632
 ILMN_1794213
 ABHD14A
 0.387
ILMN_1702197
 SAPCD2
 0.630
 ILMN_1776967
 DNAAF1
 0.387
ILMN_1728934
 PRC1
 0.630
 ILMN_1736184
 GSTM3
 0.387
ILMN_1739645
 ANLN
 0.629
 ILMN_1760574
 RAI2
 0.387
ILMN_2049021
 PTTG3
 0.629
 ILMN_2341254
 STARD13
 0.387
ILMN_1670238
 CDC45
 0.628
 ILMN_1651364
 PCBD2
 0.387
ILMN_1799667
 KIF4A*
 0.628
 ILMN_1769382
 KBTBD3
 0.387
ILMN_1788166
 TTK
 0.628
 ILMN_1697317
 DYNLRB2
 0.387
ILMN_1771734
 GMPSP1
 0.627
 ILMN_1790350
 TPRG1
 0.388
ILMN_1811472
 KIF23
 0.627
 ILMN_1664348
 PNPLA4
 0.389
ILMN_1666305
 CDKN3
 0.627
 ILMN_2125763
 ZMYND10
 0.389
ILMN_1731070
 ORC6
 0.627
 ILMN_2323385
 TRIM4
 0.389
ILMN_2413650
 STIL
 0.626
 ILMN_1657451
 SRPK2
 0.389
ILMN_1770678
 CBX2
 0.626
 ILMN_1779416
 SCUBE2
 0.390
ILMN_1749829
 DLGAP5*
 0.625
 ILMN_1719622
 RABEP1
 0.391
ILMN_1789510
 STIP1
 0.624
 ILMN_1687351
 ANKRA2
 0.391
ILMN_1814281
 SPC25
 0.624
 ILMN_1691884
 STC2
 0.391
ILMN_1709294
 CDCA8
 0.624
 ILMN_2140700
 CRIPAK
 0.393
ILMN_1671906
 MND1
 0.624
 ILMN_1858599
 HS.20255
 0.393
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Therefore, we hypothesized that the MES signature would be prognostic
only for very early stage breast cancer patients, which we defined by the
absence of positive lymph nodes combined with a tumor size less than
30 mm. This restriction improved prognostic ability, but it still did not
reach the level of statistical significance.However, we found that, in com-
binationwith the other features thatwe used, this restricted version of the
MES signature was helpful toward the performance of our final model.
This was confirmed, as we describe below, by the fact that the prognostic
power of our finalmodelwas reducedwhen eliminating theMES feature.
www.Scie
LYM attractor metagene
In the Challenge, we represented the LYM attractor metagene with the av-
erageof the expression levels of the10 top-rankedgenes fromourpreviously
evaluated (2) attractor metagene: PTPRC (CD45), CD53, LCP2 (SLP-76),
LAPTM5, DOCK2, IL10RA, CYBB, CD48, ITGB2 (LFA-1), and EVI2B. We
refer to the metagene defined by this average as the LYM feature. The com-
position of this gene signature indicates that a signaling pathway that in-
cludes the protein tyrosine phosphatase receptor typeC (also calledCD45;
encoded by PTPRC) and leukocyte surface antigen CD53 has a role in pa-
nceTranslationalMedicine.org 17 A
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tient survival. Some of the top-ranked
genes in the LYM attractor metagene,
including ADAP (FYB), are known to
participate in a particular type of im-
mune response (11) inwhich the LFA-1
integrin mediates costimulation of T
lymphocytes that are regulated by the
SLP-76–ADAP adaptor molecule.

By itself, theLYMfeaturewasslightly
protective (CI < 0.5) in theMETABRIC
data set butwasnot significantly asso-
ciated with prognosis. Therefore, we
useda “trial anderror”approachbytest-
ing the prognostic power of the feature
on various subsets of patients grouped
on the basis of histology, estrogen re-
ceptor (ER) status, etc.TheLYMfeature
was strongly protective in ER-negative
breast cancer in the METABRIC data
set, and this observation was validated
in the OsloVal data set; Fig. 2A shows
Kaplan-Meier survival curves for ER-
negative patients from theMETABRIC
data set (P = 0.0024 using log-rank
Fig. 1. Mitotic CIN attractor metagene. (A and B) Kaplan-Meier cumulative survival curves of breast cancer
patients over a 15-year period on the basis of the mitotic CIN attractor metagene expression—represented by

the CIN feature—in the (A) METABRIC and (B) OsloVal data sets. The patients were divided into equal-sized “high”
and “low” CIN-expressing subgroups according to their ranking with respect to expression values of the CIN
feature. High expression of the mitotic CIN attractor metagene was associated with poorer survival in both data
sets. P values derived using the log-rank test in the two data sets were less than 2 × 10−16 and 0.041, respectively.
D
ow

nl
oa

de
d 

fr
om
Fig. 2. LYM attractor metagene. (A and B) Kaplan-Meier cumulative sur-
vival curves of ER-negative breast cancer patients over a 15-year period on

cancer patients with more than four positive lymph nodes over a 15-year
period on the basis of LYM attractor metagene expression—represented
the basis of LYM attractor metagene expression—represented by the LYM
feature—in the (A) METABRIC and (B) OsloVal data sets. The ER-negative
breast cancer patients were divided into equal-sized high and low LYM-
expressing subgroups according to their ranking with respect to expression
values of the LYM feature. High expression of the LYM attractor metagene
was associated with improved survival in both data sets. P values derived
using the log-rank test in the two data sets were 0.0024 and 0.0223, respec-
tively. (C) Kaplan-Meier cumulative survival curves of ER-positive breast
by the LYM feature—in the METABRIC data set. ER-positive breast cancer
patients with more than four positive lymph nodes were divided into
equal-sizedhigh and lowLYM-expressing subgroups according to their rank-
ing with respect to expression values of the LYM feature. In contrast to (A),
high expression of the LYM attractor metagene was associated with poorer
survival in this patient subset. The P value derived using the log-rank testwas
0.0278. There were only 19 corresponding samples in the OsloVal data set,
insufficient for validation of this reversal relative to (B).
pril 2013 Vol 5 Issue 181 181ra50 4
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test); Fig. 2B showsKaplan-Meier survival curves for ER-negative patients
from the OsloVal data set (P = 0.0223 using log-rank test). In both cases,
the curves compare tumors with high and low values of the LYM feature.

By contrast, the effect on prognosis was reversed for patients who
had ER-positive cancers and multiple cancer cell–positive lymph nodes;
Fig. 2C shows the Kaplan-Meier survival curves for METABRIC pa-
tients with ER-positive status and more than four positive lymph nodes,
comparing tumors with high and low values of the LYM feature (P =
0.0278 using log-rank test). There were only 19 corresponding samples
in the OsloVal data set, insufficient for validation of this reversal.

FGD3-SUSD3 metagene
As shown in Table 1, the FGD3 and SUSD3 genes were found to be the
most protective ones in the METABRIC data set, with CIs equal to 0.352
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and 0.358, respectively. Therefore, we
considered them to be promising can-
didates to be includedas features inour
prognostic model. The two genes are
genomically adjacent to each other
at chromosome 9q22.31. In our final
prognostic model, we used the FGD3-
SUSD3metagene, which was defined
by the average of the two expression
values.

A scatter plot (Fig. 3A) of the
METABRIC expression levels of
FGD3 versus SUSD3 showed that the
two genes did not appear to be co-
regulated when one or the other
gene was highly expressed, but the
genes did appear to be simultaneously
silent (that is, low expression of one
gene implies low expression of the
other). The CIs for the FGD3-SUSD3
metagene and the estrogen receptor 1
(ESR1) gene in the METABRIC data
set were 0.346 and 0.403, respective-
ly, indicating that the lack of FGD3-
SUSD3 expression was more strongly
associated with poor prognosis com-
pared with lack of expression of ESR1.
Furthermore, a scatter plot (Fig. 3B)
of the METABRIC expression levels
of the FGD3-SUSD3 metagene versus
ESR1 revealed that the two features
were associated in the sense that ER-
negative breast cancers tended to ex-
press low levels of the FGD3-SUSD3
metagene, but the reverse was not nec-
essarily true.

The poor prognosis associated with
low expression of the FGD3-SUSD3
metagenewasvalidated in theOsloVal
data set. Figure 3C shows the Kaplan-
Meier curves for the FGD3-SUSD3
metagene in the METABRIC data
set (P < 2 × 10−16 using log-rank test).
Figure 3D shows the Kaplan-Meier
www.Scie
survival curves for the FGD3-SUSD3 metagene in the OsloVal data
set (P = 0.0028 using log-rank test). In both cases, the curves compare
tumors with high and low expression of the FGD3-SUSD3 metagene.

Breast Cancer Prognosis Challenge model
The development of our breast cancer prognosis model for the Chal-
lenge is described in detail in Materials and Methods. It used, as
potential features, several metagenes that we had identified previously
(2), the FGD3-SUSD3metagene (identified during the Challenge), and
the clinical phenotypes that were available to the Challenge participants.
During the course of the Challenge, we tried several combinations of
prognostic algorithms (based on various statistical and machine-learning
techniques), each of which defined a computational model that au-
tomatically selected some of the potential features and achieved
Fig. 3. FGD3-SUSD3 metagene. (A) A scatter plot of the expression of SUSD3 versus FGD3 in the METABRIC
data set shows a high variance in the expression of both genes at high expression levels. On the other hand,

low expression of one strongly suggests low expression of the other in breast tumors. (B) ER-negative breast
tumors tended not to express the FGD3-SUSD3 metagene, whereas ER-positive breast tumors may or may not
express the FGD3-SUSD3metagene. (C and D) Kaplan-Meier cumulative survival curves of breast cancer patients
over a 15-year period on the basis of FGD3-SUSD3 metagene expression in the (C) METABRIC and (D) OsloVal
data sets. Patients were divided into equal-sized high and low subgroups according to their ranking with re-
spect to FGD3-SUSD3 metagene expression values. Low levels of FGD3-SUSD3 metagene expression were as-
sociated with poor survival in both data sets. P values derived using the log-rank test in the two data sets were
less than 2 × 10−16 and 0.0028, respectively.
nceTranslationalMedicine.org 17 April 2013 Vol 5 Issue 181 181ra50 5
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prediction of survival. We refer to these as “submodels,” which were
eventually combined into one “ensemble” model.

The choices of parameters and prognostic methods used in the de-
velopment of each submodel were made by trial and error search. Spe-
cifically, we made several submissions to the leaderboard using initial
guesses about which combinations of features would be most prognos-
tic and observed the resulting CIs; we also carried out our own cross-
validation experiments (that is, we randomly partitioned the available
samples into a training set and a validation set, trained the model ac-
cordingly, and recorded the CI in the validation set).

Figure 4 shows the Kaplan-Meier cumulative survival curves for
our final ensemble prognostic model using the OsloVal data set (the
P value derived from the log-rank test was lower than the minimum
computable one, which was 2 × 10−16 using log-rank test), comparing
patients with “poor” and “good” predicted survival according to the
ranking assigned by the model, which was trained on the METABRIC
data set.

The corresponding CI of the final ensemble model in the OsloVal
data set was 0.7562. To test whether three of our features—CIN, MES,
and LYM—contributed toward increasing the CI for our model using the
OsloVal data set, we evaluated the CIs after removing each feature sep-
arately and retraining the model on the METABRIC data set without it.
The resulting CI after removing the CIN feature and keeping the MES
andLYM featureswas 0.7526, theCI after removing theMES feature and
keeping the CIN and LYM features was 0.7514, and the CI after remov-
ing the LYM feature and keeping the CIN andMES features was 0.7488.
In all cases, the CI was lower than that of the ensemble model. These
results are consistent with our hypothesis that each of these three attrac-
tor metagenes provides information useful for breast cancer prognosis.

Comparison with random gene expression signatures
Venet et al. recently observed that randomly chosen gene expression
signatures may often be significantly associated with breast cancer out-
come (12). To explain this phenomenon, the authors introduced a
specially defined proliferation signature—called meta-PCNA—which
consists of 127 genes whose expression levels were most positively
correlated with that of the proliferation marker PCNA, as determined
from a gene expression data set of normal tissues. They observed that
the meta-PCNA signature, although derived from an analysis of nor-
mal tissues, was prognostic for breast cancer outcome, and that the
expression levels of many other genes were also associated with the
meta-PCNA signature to varying degrees. Thus, they explained the ob-
served association of random signatures with breast cancer outcome by
the fact that several member genes of such random signatures are likely
to be associated with those prognostic genes.

The meta-PCNA signature is highly similar to our own mitotic
CIN attractor metagene. Indeed, 39 of the 127 genes in the meta-
PCNA signature are among the 100 top-ranked genes of the CIN at-
tractor metagene (2) (the P value for such overlap is 1.07 × 10−54

based on Fisher’s exact test). Furthermore, 7 of the 10 genes (CENPA,
MELK, KIF2C, KIF20A, KIF4A, CCNA2, and CCNB2) of our CIN fea-
ture used in the Challenge are among the 127 genes of the meta-
PCNA signature.

Therefore, both the meta-PCNA signature, which was derived from
normal tissue analysis, and the mitotic CIN attractor metagene, which
was derived from a multicancer analysis, can be used to explain the
observed phenomenon that random gene expression signatures are as-
sociated with breast cancer outcome. To compare the mitotic CIN at-
www.Scie
tractor metagene with the meta-PCNA signature, we evaluated the
corresponding CIs for the two breast cancer data sets (NKI and Loi)
used in the meta-PCNA study (12), for the METABRIC data set using
both DS- and OS-based survival data, and for the OsloVal data set. In
all five cases, the CIs of the CIN feature were slightly higher than those
of the meta-PCNA signature (Table 2). We hypothesize that the large
“mitotic” component of the mitotic CIN attractor metagene is not ex-
clusively cancer-associated, but it is also found in normal cells. By con-
trast, we hypothesize that the “chromosomal instability” component of
the mitotic CIN attractor metagene is cancer-related and may account
for the observed slightly higher association with survival compared with
the meta-PCNA signature. Furthermore, the performance of our en-
semble model with the OsloVal data set was higher than that of the
CIN metagene alone.
DISCUSSION
Even though we used features discovered previously from an un-
supervised and multicancer analysis without using the METABRIC
Table 2. CIs of the CIN feature and meta-PCNA index in four breast
cancer data sets.
nceTranslationalMedicine.org
CIN feature
17 April 2013 Vol 5 Issu
Meta-PCNA index
NKI
 0.725
 0.717
Loi
 0.675
 0.662
METABRIC: DS-based
 0.648
 0.635
METABRIC: OS-based
 0.605
 0.595
OsloVal
 0.579
 0.554
Fig. 4. Final ensemble model. Shown are Kaplan-Meier cumulative sur-
vival curves of breast cancer patients over a 15-year period on the basis of

the predictions made by the final ensemble model in the OsloVal data set.
The patients were divided into equal-sized poor and good predicted sur-
vival subgroups according to the ranking assigned by the final model,
which was trained on the METABRIC data set. The P value derived using
the log-rank test was less than 2 × 10−16.
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Fig. 5. Schematic of model development. Shown are block diagrams
that describe the development stages for our final ensemble prognostic

predictions from each submodel. Our model derived the attractor me-
tagenes using gene expression data, combined them with the clinical
model. Building a prognostic model involves derivation of relevant
features, training submodels and making predictions, and combining
www.Scie
information through Cox regression, GBM, and KNN techniques, and
eventually blended each submodel’s prediction.
nceTranslationalMedicine.org 17 April 2013 Vol 5 Issue 181 181ra50 7
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data set for training, our model proved highly predictive of survival
in breast cancer within the context of the Challenge. Therefore, we
hypothesize that these features represent important molecular events
in cancer development and might be associated with cancer-related
phenotypes other than survival, such as response to drugs. A clinical
trial would be required to test whether our computational predictions
have utility in the realm of patient care.

Several cancer-related gene signatures that share similarity with the
mitotic CIN and MES attractor metagenes have been reported (13–16).
The key advantage of the attractor metagenes is that they are sharply
defined by independent analyses, after being discovered separately and
in nearly identical form in multiple cancer types, and can thus point
to the few top-ranked genes for each attractor metagene. In the short
term, these select genes can be tested for their ability to improve the
performance of current cancer biomarker products. Existing clinical bio-
marker products include some genes that are components of attractor
metagene signatures but do not rank at the top of their corresponding
ranked list of genes. For example, the CENPA, PRC1, and ECT2 genes
are among those used in Agendia’s MammaPrint (17) breast cancer assay,
andCCNB1, BIRC5,AURKA,MKI67, andMYBL2 are used in Genomic
Health’s Oncotype DX (18) assay for breast cancer. All eight of these
genes are included in the ranked list of the top 100 genes of the CIN at-
tractor metagene (2). It would be reasonable to test whether replacing
such genes with a choice that more closely represents the mitotic CIN
attractor metagene would improve the accuracy of these products.

In the longer term, study of these top-ranked genes may provide
opportunities for uncovering new molecular mechanisms of cancer bi-
ology. Cross-disciplinary collaborations among molecular biologists
and molecular geneticists, cancer researchers and clinicians, systems
biologists, immunologists, and drug discovery scientists that are aimed
at scrutinizing the attractormetagenesmay reveal newmethods for ther-
apeutic intervention.

We previously found that the MES attractor metagene is strongly
expressed in human cancer cells, but never in mouse stromal cells,
after implanting pure human (neuroblastoma) cancer cell lines in im-
munodeficient mice (19). For this reason, we hypothesize that related
gene expression signatures [often associated with drug response (16) or
survival (10) in various cancer types] that appear to be of stromal origin
because they contain fibroblastic markers may, in fact, be associated
with the invasive cancer cells themselves.

Breast cancer has been classified into fourmain subtypes (20), which
were also provided as clinical annotation features in the Challenge.
However, we found that subtype identification did not impart any ad-
ditional prognostic power to our model, despite our best efforts to
incorporate subtype features in our model in various ways.

Notably absent from our selected features are copy number var-
iations (CNVs), although such data were provided in uniformly
renormalized form for both the METABRIC and OsloVal data
sets. We tried to include CNVs and found that they did not improve
performance in the presence (but not in the absence) of the CIN
attractor metagene. We were aware that a CNV-based “genomic in-
stability index” (GII) was used as part of a milestone performance
before the start of the Challenge. However, we found that the inclu-
sion of the CIN expression–based feature nullified the prognostic
ability of GII as well as of all the individual CNVs that we tried. Even
for the amplicons, we found that the corresponding expression-based
attractor metagenes consistently had higher prognostic ability com-
pared to any kind of CNV-based features that we tried. Therefore, we
www.Scie
speculate that (i) the components of the mitotic CIN metagene play
fundamental biological roles that function upstream of biological aber-
rations caused by genomic alterations in cancer, and (ii) the biological
effects of CNVs are more directly manifested by the expression of a
few highly ranked genes in the corresponding amplicon attractor than
by the presence of CNVs in the corresponding genomic region.
MATERIALS AND METHODS

Data used by Challenge participants can be found at:
METABRIC: https://synapse.prod.sagebase.org/#Synapse:syn1688369
OsloVal: https://synapse.prod.sagebase.org/#Synapse:syn1688370

A general overview of building a prognostic model
Building our prognostic model involved derivation and selection of
relevant features, training the submodels using the derived features
based on survival information, and combining predictions from the
submodels to produce a robust ensemble prediction. Figure 5 shows
block diagrams describing our model. Each subhead in the figure
corresponds to the section with the same subhead that follows. The source
code of the model is available on Sage Synapse under ID syn1417992
and in table S4.

Derivation of features
We reduced the number of potential molecular features by preselect-
ing the 12 features shown in table S1. We chose these features by trial
and error after several experiments, including and removing features
and evaluating the performance on the Challenge leaderboard and in
cross-validation. The set of features used in the final model included
(i) the three attractor metagenes and the FGD3-SUSD3 metagene de-
scribed in Results; (ii) the chr8q24.3 amplicon attractor metagene (be-
cause we had found it to be the most prominent amplicon in all
cancer types we had considered and in the METABRIC training data
set) (2) and the chr15q26.1 amplicon attractor metagene (because we
had found it to be the most prognostic amplicon in the METABRIC
training data set); (iii) three breast cancer–specific attractor metagenes
(the ER metagene, the adipocyte metagene, and the HER2 metagene);
and (iv) two additional metagenes—ZMYND10 metagene and the
PGR-RAI2 metagene—because we observed that their inclusion often
improved performance. Both the ZMYND10 and PGR-RAI2 meta-
genes were protective (their individual CIs in all breast cancer data sets
were less than 0.5). The rationale for considering these metagenes was
that we wished to include additional protective features, and these ones
were highly protective and at the same time not positively correlated
with the most protective feature, the FGD3-SUSD3 metagene.

Each metagene feature used in our model was defined by the aver-
age expression value of each of the 10 top-ranked genes in each attractor
metagene. If, however, some of these 10 genes had mutual information
with the metagene—as defined in (2)—that was less than 0.5, it was
removed from consideration when deriving the metagene feature. If
a gene was profiled by multiple probes—a collection of micrometer
beads that bind a specific nucleic acid sequence—we selected the probe
with the highest degree of coexpression with the metagene. The se-
lection was done by applying the iterative attractor-finding algorithm
(2) on all the probes for the top 10 genes and selecting the top-ranked
probe for each gene. The expression values of each metagene feature
were median-centered by subtracting their median value.
nceTranslationalMedicine.org 17 April 2013 Vol 5 Issue 181 181ra50 8
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All the categorical—nonnumerical, such as histological type—
variables in the clinical data were binarized by representing each cate-
gory by a binary variable. In that case, missing values were assigned
zero in each binary variable. For example, the categorical variable
ER_IHC_status (a variable that describes the immunochemistry sta-
tus of ER) was binarized into two binary variables: ER-positive (ER.P)
and ER-negative (ER.N). ER-positive patients were assigned [1, 0] for
these two variables, ER-negative patients were assigned [0, 1], and
patients with missing ER status were uniquely assigned [0, 0]. Missing
values in numerical variables were imputed by the average of the
nonmissing values across all samples.

Conditioning of metagene features. We used three conditioned
metagene features in our model: the MES feature conditioned on tumor
sizes of less than 30 mm and no positive lymph nodes, the LYM feature
conditioned on ER-negative patients, and the LYM feature conditioned
on patients with more than three positive lymph nodes. We conditioned
the features by median-centering the metagene’s expression values of the
subgroup of samples, satisfying the condition using the subgroup’s
median, and setting the values of the remaining samples to zero.

Training submodels and making predictions
A prognostic model selects particular features out of the set of
derived features and combines them using an algorithm for opti-
mally fitting the given survival information. Our ensemble model
consisted of several such submodels. The choice of these models,
described below, was made on a trial and error basis depending
on the occasional leaderboard scores of other Challenge participants
and our own cross-validation scores.

Cox regression based on Akaike Information Criterion. The Cox
proportional hazards model relates the effect of a unit increase in a
covariate to the hazard ratio (21). To select from derived features as
covariates in the regression model, we performed stepwise selection
based on Akaike Information Criterion (AIC) (22). In each step, we
selected the feature with the lowest AIC measure. The Cox-AIC model
makes predictions by computing fitted values of the given features to
the regression model.

We used AIC for feature selection on molecular features and clin-
ical features separately to fit Cox proportional hazards models. The
molecular and clinical features selected by the Cox-AIC model applied
to the METABRIC data set are given in table S2. The predictions
made by the two separate models were combined by summation.

Generalized boosted regression models. The generalized boosted
regression model (GBM) adopts the exponential loss function used
in the AdaBoost algorithm (23) and uses Friedman’s gradient descent
algorithm accompanied by subsampling to improve predictive perform-
ance and reduce computational time (24).

We trained GBMs on molecular features and clinical features sep-
arately, as we did for the Cox-AIC models. We used only the clinical
features that were selected by the Cox-AIC model (listed in table S2)
as input to the GBM. We performed fivefold cross-validation to deter-
mine the best number of trees in the model. The tree depth was set to
the number of significant explanatory variables in the Cox-AIC model
(P < 0.05 based on t test). The predicted values made by the two sep-
arated models were combined by summation.

K-nearest neighbor model. We used a modified version of the
K-nearest neighbor (KNN) model (25) for survival prediction in our
model. We selected the features whose values defined patients’ ranking
with CI greater than 0.6 or less than 0.4 in the training set.
www.Scie
When making predictions, we computed the Euclidean distance in
the selected feature space between the patient with unknown survival
and each deceased patient in the training set. The top 10% of the de-
ceased patients with smallest distances, defined as the “nearest neigh-
bors,” were used to make predictions. The predictions were made by
taking the weighted average of the survival times of the nearest neigh-
bors, where the weight of a neighbor was the reciprocal of the distances
between the neighbor and the patient with unknown survival.

Combination of Cox regression and GBM applied on empirically
selected features. We observed that the performance of the overall
model was improved by incorporating a submodel constrained to in-
clude the four fundamental molecular features described in Results
(CIN, MES constrained to a tumor size less than 30 mm with no pos-
itive lymph node, LYM constrained to ER-negative patients, and the
FGD3-SUSD3 metagene) together with very few clinical features,
which, by trial and error search, we determined to be the number of
positive lymph nodes and the age at diagnosis. The selected features
were used to fit a Cox regression model and a GBM, whose predictions
were combined by summation. The Cox proportional hazards model
trained on these features is given in table S3.

Combination of predictions
Our final model contained the submodels described above. We added
the resulting predictions from Cox-AIC and GBM, as well as the re-
ciprocal of the predicted survival time given by the KNN model, and
we divided the result by the corresponding SD. We also did the same
normalization on the predictions derived from submodel 4 above, and
the final ensemble prediction was the summation of these two.

Combination of OS- and DS-based predictions
Our best performance on the leaderboard was achieved when we
trained our models twice, once using OS-based survival data and again
using DS-based survival data, and then combining the two predictions.
Therefore, we adopted the ensemble model depicted in Fig. 5. We com-
bined these two sets of predictions by taking the weighted average of
the two. The weights were determined by maximizing the CI with OS
in the training set with a heuristic optimization technique.

SUPPLEMENTARY MATERIALS
www.sciencetranslationalmedicine.org/cgi/content/full/5/181/181ra50/DC1
Table S1. Molecular features used in the model.
Table S2. Cox proportional hazards model trained on molecular and clinical features on the
basis of AIC.
Table S3. Cox proportional hazards models trained on empirically selected features.
Table S4. Source code of the final model.
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